

M.Pharm Pharmaceutical Chemistry Program outcome

	To inculcate in-depth knowledge to carryout independent research in organic and medicinal chemistry to
	develop new cost effective and ecofreindly synthetic routes to synthesize drugs and develop new drug
PO1(MPC)	molecules
	Understand the basics of organic reactions and mechanisms of named reactions, retrosynthetic principles,
	various analytical techniques and utilize this knowledge to plan organic reactions for the synthesis,
PO2(MPC)	purification and characterization of drugs and natural compounds
	To familiarize with the recent developments and state of art technologies utilized in drug design,
PO3(MPC)	development, synthesis, scale up and analysis and attain practical knowledge in these techniques
	Utilize various computational tools, molecular modeling applications, scientific database retrieval systems
PO4(MPC)	for the development of independent drug discovery projects

M.Pharm Pharmaceutical Chemistry- Course outcomes

ID	OUTCOME
CO1(MPC)	To understand the principles and applications of various Modern analytical techniques and attain practical
	skills in handling various analytical instruments
CO2(MPC)	Able to understand organic reactions, mechanisms and identify appropriate synthetic routes for the
	synthesis of drug intermediates and drugs

CO3(MPC)	To attain detailed knowledge on the processes of drug discovery, design and development ; to gain
	knowledge on medicinal chemistry of several classes of drugs
CO4(MPC)	To attain detailed knowledge on isolation, purification, chracterization using physical and spectral data and
	pharmacological activities of medicinal compounds from natural origin,
CO5(MPC)	Able to analyse organic intermediates and drugs using various analytical instruments. Able to carryout
	various organic reactions of synthetic importance, perorm purification and characterization using
	Chromatographic and spectroscopic techniques
CO6(MPC)	To acquire detailed knowledge on hyphenated anlytical techniques and deal with analytical data and
	interprete to identify structures and purity of the compounds
CO7(MPC)	Able to understand the importance of green chemistry synthesis, to gain knowledge on catalysis, catalysts,
	assymmetric organic synthesis, Photo chemistry and peptide chemistry and their importance in drug
	synthesis
CO8(MPC)	Able to understand the concepts of various computer aded drug design tools, Student can able to utilize
	various molecular modeling softwares, online tools used in drug design and development.
CO9(MPC)	To impart knowledge in optimization of organic reactions for scale up, development of new synthetic routes
	for eco friendly, safe and cost effective applications
CO10(MP	To utilize various green chemistry protocols and conventional techniques for the synthesis of drugs(API)
C)	and intermediates, Characterize the compounds with spectral data, to handle molecular modeling softwares
	to perform in silico studies and molecualr properties prediction
CO11(MP	Able to understand research methodologies, biostatistical tools that can be employed in research, various
C)	medical care protocols, CPCSEA guidelines for laboratory animals.
/	

RECEIPTION OF THE RECEIPTION O	G. Pulla Reddy College of Pharmacy ISO 9001 - 2000 Certified College (Affiliated to Osmania University and Approved by AICTE & PCI)
CO12(M	P
C)	Able to understand the details of a journal and its importance along with protocols of writing a journal.
CO13(M	P Able to acquire freedom to express their ideas and thoughts of their perspective in choosing a project of
C)	their own interest under the supervision of respective guides.
CO14(M	P Able to explain their research projects through seminars, along with their thesis, in partial fulfillment for
C)	the award of their post-graduation degree

۰.

M.Pharm Pharmaceutical Chemistry- Program outcome and course outcome Map

		I- SEMESTER	R	
	Code	e:MPC:101T - Sub: N	MPAT	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)		X	X	
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				

CO5(MPC)		X	X	
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
	Code	e:MPC:102T - Sub: A	OC-1	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)	X	X	X	
CO3(MPC)				
CO4(MPC)				
CO5(MPC)	X	X	X	
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				

EGFO				
G.	Pulla Red	9001 - 2000 Certifie	d College	C C
RABADI	(Affiliated to Osma	nia University and A	pproved by AICTE 8	& PCI)
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
	Cod	le:MPC:103T-Sub: A	AMC	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)	X	X	X	
CO4(MPC)				
CO5(MPC)	X	X	X	
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				

•

۰.

	Coo	le:MPC:104T- Sub: (CNP	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				X
CO4(MPC)		X	X	
CO5(MPC)		X	X	X
CO6(MPC)				
CO7(MPC)				X
CO8(MPC)				
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
Code:MP	A:105TP- Sub: PH	ARMACEUTICAL (CHEMISTRY PRAC	CTICAL I
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)	X	X	X	
CO2(MPC)	X	X		X

R
DECONTROS

CO3(MPC)		X		X
CO4(MPC)		X		
CO5(MPC)		X		X
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
		II- SEMESTER	2	
	Cod	le:MPC:201T - Sub:	ASA	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
``´´				

	X	X	
	X	X	
Code	e:MPC:202T - Sub: A	OC-2	
PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
X	X	X	
X	X	X	
	PO1(MPC) X 	Image: Code:MPC:202T - Sub: A PO1(MPC) PO2(MPC) X	Image: Second state of the second s

G.	Pulla Red	9001 - 2000 Certifie	ge of Pila	rmacy a
11/5	(Affiliated to Osma	nia University and A	Approved by AICTE &	& PCI)
ABAN			电报告运动	
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
CO13(MPC)				
CO14(MPC)				
	Code	e:MPC:203T- Sub: C	CADD	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				
CO7(MPC)				
CO8(MPC)			X	X
CO9(MPC)				
CO10(MPC)			X	X

۰.

A COLLEGE	2
R	PHARMA
Denas and a deter	7

CO12(MPC)				
CO12(MPC)				
CO13(MPC)				
		LANDCAMT Carbo		
		le:MPC:204T-Sub:		
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				
CO7(MPC)				
CO8(MPC)		X		
CO9(MPC)		X	X	
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
Code:	MPA:205TP- Sub: PH	ARMACEUTICAL (CHEMISTRY PRAC	CTICAL I
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)

G .	Pulla Red	dy Colleg	ge of Pha	rmacy a
12 Jo	ISO (Affiliated to Osma	9001 - 2000 Certifie nia University and A	d College opproved by AICTE &	k PCI)
RABAO				
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				
CO10(MPC)		X	X	X
CO11(MPC)				
CO12(MPC)				
		III- SEMESTER	t l	
	Cod	le:MPC:301T - Sub:	RMB	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				

•

•

G.	Pulla Red ISO (Affiliated to Osma	dy Colleg 9001 - 2000 Certifie nia University and A	d College	(\mathbf{c})
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				
CO10(MPC)				
CO11(MPC)			X	X
CO12(MPC)				
CO13(MPC)				
CO14(MPC)				
	Discussion/	Presentation (Proposal 1	Presentation)	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				

C C	Pulla Red	dy Colles	e of Pha	
R	ISO	9001 - 2000 Certifie nia University and A	d College	0
DERABAS	(Anniated to Osina	ma oniversity and A	pproved by AICTL	
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)	X	X	X	Χ
CO13(MPC)				
CO14(MPC)				
		Research Work		
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				

•

۰.

CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
CO13(MPC)	X	X	X	X
CO14(MPC)				

		IV- SEMESTER	ł	
		Research Work		
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				

CO10(MPC)				
CO11(MPC)				
CO12(MPC)				
CO13(MPC)	X	X	X	X
CO14(MPC)	X	X	Х	Х
]	Discussion/Presentation	1	
	PO1(MPC)	PO2(MPC)	PO3(MPC)	PO4(MPC)
CO1(MPC)				
CO2(MPC)				
CO3(MPC)				
CO4(MPC)				
CO5(MPC)				
CO6(MPC)				
CO7(MPC)				
CO8(MPC)				
CO9(MPC)				
CO10(MPC)				
CO11(MPC)				
CO12(MPC)				

A CALL OF A CALL		ulla Reddy ISO 9001 Affiliated to Osmania U	I - 2000 Certified C	ollege	(\mathbf{c})	12 RNATIONAL
	CO13(MPC)					
-	CO14(MPC)	X	X	X	X	

SPECIFIC LEARNING OUTCOMES (SLO)-- I Semester

	M.PHARM-PHARMACEUTICAL CHEMISTRY (MPC)			
Code:1	01T- MODERN PHAR	MACEUTICAL ANALYTICAL TECHNIQUES (MPAT)		
Id	Unit / Topic	Outcome statement		
SLO1(MPAT	Spectroscopy	Able to understand the principles and instrumentation of UV-Vis,		
)		IR, Flame emission spectroscopy along with spectro fluorometry		
		and their applications		
SLO2(MPAT	NMR spectroscopy	To understand Principles, Instrumentation, Solvent requirements,		
)		chemical shifts of NMR; briefly about FT-NMR and 13CNMR		
SLO3(MPAT	Mass spectroscopy	To understand Mass Spectroscopy, appreciate various Ionization		
)		techniques, Fragmentation Rules, Mass Analysers and its		
		Applications		
SLO4(MPAT	Chromatography	Able to understand in detail about various types of		
)		Chromatographic techniques (TLC, HPLC, HPTLC, GC, UPLC,		

		etc)
SLO5(MPAT	Electrophoresis and X-	To understand the princple, instrumentation and appreciate various
)	Ray Crystallography	methods of Electrophoresis and X-ray Crystallography
SLO6(MPAT	Potentiometry and	To know about methods of advanced Instrumentation of
)	Thermal techniques	Potentiometry and Thermal techniques (DSC, DTA, DDTA, TGA)
	CODE:102T- ADV	ANCED ORGANIC CHEMISTRY-I(AOC-I)
SLO1(AOC-	Basic Aspects of	To understand basic concepts of organic chemistry, types of
I)	Organic Chemistry	reactions and appreciate their reaction mechanisms
SLO2(AOC-	Named Reactions	To understand the reaction mechanism and synthetic applications
I)		of various named reactions
SLO3(AOC-	Synthetic reagents and	To acquire knowledge on various reagents used in organic
I)	Applications	synthesis and their applications
SLO4(AOC-	Protecting groups	To appreciate the concept of protection and deprotection of
I)		functional groups in organic synthesis
SLO5(AOC-	Heterocyclic	To understand the reaction mechanism of the named reactions
I)	chemistry	involved in the synthesis of various heterocyclic ring systems and
		synthesis of drugs containing them
SLO6(AOC-	Retrosynthesis	To understand the principles of retrosynthesis analysis and
I)		guidelines for the disconnection of organic molecules

	CODE:103T- ADV	ANCED MEDICINAL CHEMISTRY (AMC)
SLO1(AMC)	Drug discovery	Able to understand different stages of drug discovery and to know
		about drug targets
SLO2(AMC)	Prodrug design	To appreciate the concept of prodrug design and their applications
		in drug discovery
SLO3(AMC)	Combating drug	To understand causes of drug resistance and the strategies to
	resistance	combat drug resistance
SLO4(AMC)	Analog Design	To acquire knowledge on molecular modification techniques used
		in analogue design
SLO5(AMC)	Medicinal chemsitry	Systematic study, SAR, Mechanism of action and synthesis of new
	of drugs	generation molecules of various classes of drugs
SLO6(AMC)	Stereochemistry and	To understand the importance of sterochemistry in pharmaco
	drug action	kinetics and pharmacodynamics of the drug
SLO7(AMC)	Rational Design of	Able to understand the various strategies applied in rational design
	Enzyme Inhibitors	of enzyme inhibitors
SLO8(AMC)	Peptidomimetics	To understand the concept of peptidomimetics and variuos
		strategeis in drug design
	CODE:104T- CHE	MISTRY OF NATURAL PRODUCTS(CNP)
SLO1(CNP)	Leads from Natural	Able toidentify various leads from natural products for the

	products	discovery of new drugs
SLO2(CNP)	Alkaloids, Flavanoids	To uderstand the isolation, purification and structure elucidation of
	and Steroids	various alkaloids and flavanoids
SLO3(CNP)	Terpenoids and	To uderstand the isolation, purification and structure elucidation of
	Vitamins	terpenoids and physiological significance of Vitamins
SLO4(CNP)	rDNA technology	To appreciate the concept and methods of rDNA technology in
		drug disovery and crude drugs in indigenious system
SLO5(CNP)	Structural	Able to solve the structures of natural compounds using IR, 1H
	Characterization of	NMR, 13C NMR and Mass spectroscopy
	Natural Compounds	
С	ODE:105T- PHARMA	CEUTICAL CHEMISTRY PRACTICAL-I (PCP-I)
SLO1(PCP-I)	Able to perform analysi	s of drugs using various analytical techniques
SLO2(PCP-I)	Able to perform organic	e reactions of synthetic importance
SLO3(PCP-I)	Able to synthesize, puri	fy and characterize medicinally important molecules
SLO4(PCP-I)	Able to perform isolation	n and characterization of natural compounds from natural sources

SPECIFIC LEARNING OUTCOMES (SLO)- M.PHARM PHARMACEUTICAL CHEMISTRY – II Semester

Code:201T - M.PHARM-PHARMACEUTICAL CHEMISTRY (MPC)

ID	Unit / Topic	
SLO1(ASA)	UV and IR spectroscopy	To understand and aquire knowledge on
		interpretation of UV absorption and FTIR, ATR-IR
		spectra of organic compounds
SLO2(ASA)	NMR spectroscopy	To understand the characterization of organic
		compounds using 1-D and 2-D NMR, NOESY,
		COSY, HECTOR and INADEQUATE
SLO3(ASA)	Mass Spectroscopy	To understand the principles and interpretation of
		Mass spectra of organic compounds
SLO4(ASA)	Chromatography	To understand the principle, instrumentatio and
		applications of various chromatographic techniques
		coupled with spectroscopy
SLO5(ASA)	Thermal methods of analysis,	To understand the principle, instrumentatio and
	Raman spectroscopy and RIA	applications of DSC, DTA, TGA, Raman
		spectroscopy, RIA and ELISA
	COI	DE:202T
SLO1(AOC-	Green Chemistry	To understand the fundamental principles of green
II)		chemistry, appreciate various green synthesis
		strategies in organic chemsitry

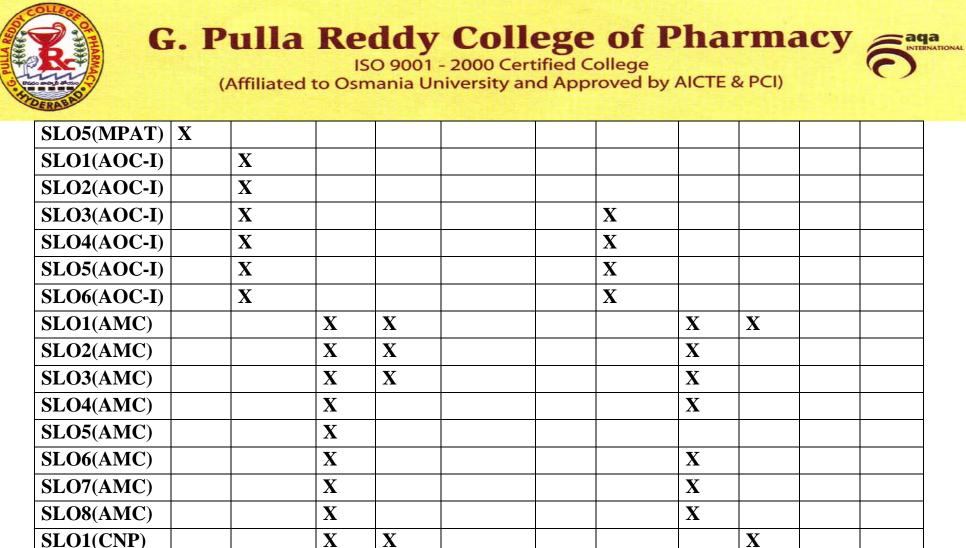
SLO2(AOC-	Chemistry of peptides	To understand the principles of solid phase and
II)		solution phase peptide synthesis and to know various
		peptide synthesis strategies
SLO3(AOC-	Photochemical and pericylic	To understand the principles of photochemical and
II)	Reactions	pericyclic reactions in organic synthesis and
		appreciate varoius mechanisms.
SLO4(AOC-	Catalysis	To understand the importnace of heterogeneous,
II)		homogenous catalysis, transition metal, Phase
		transfer and bio catalysis in organic synthesis and to
		know various Catalysts used in synthesis.
SLO5(AOC-	Stereochemistry & Asymmetric	To understand the basics of stereochemistry and
II)	Synthesis	fundemental principles of assymmetric organic
		synthesis
	COD	E:203T
SLO1(CADD)	Introduction to Computer Aided	To know the role of CADD and various tools used in
	Drug Design (CADD)	drug discovery and design, and to understand the
		concept of QSAR.
SLO2(CADD)	QSAR	To understand and appreciate the various QSAR and
· · ·		

	3D QSAR methods used in drug design
Molecular Modeling and Docking	-
Molecular Properties and Drug	-
Design	
Pharmacophore Mapping and	To understand the concept of Pharmacophore
Virtual Screening	mapping and virtual screening, perform virtual
	screening using softwares
COD	E:204T
Introduction, Synthetic strategy	To gain knowledge on various stages of scale up;
	Bench, Pilot and large scale process and their quality
	control
Unit operations	To understand the principle and application of
	various unit operations and their utilization in large
	scale organic synthesis
Unit Processes - I	To understand mechanism, Kinetics and process
	equipment of various unit processes Nitration,
	Halogenation and Oxidation
Unit Processes - II	To understand mechanism, Kinetics and process
	Molecular Properties and Drug Design Pharmacophore Mapping and Virtual Screening CODI Introduction, Synthetic strategy Unit operations Unit Processes - I

		equipment of various unit processes Reduction,						
		fermentation and reaction kinetic analysis						
SLO5(PPC)	Industrial Safety	Able to know about industrial safety measures, safety						
		assessment and safety regulations of pharmaceutical						
		and chemical industries						
CODE:205T								
SLO1(PPII)	Able to synthesize various organic compounds, intermediates and drugs using							
	conventional and microwave metho	conventional and microwave methods						
SLO2(PPII)	Able to identify compounds by int	erpreting their UV absorption, FTIR, NMR and Mass						
	spectra							
SLO3(PPII)	Able to determine/predict var	ious physico chemical, Pharmaco kinetic and						
	pharmacodynamic parametrs using	softwares						
SLO4(PPII)	Able to design analogues and p	erform in silico screening by docking, QSAR and						
	Pharmacophore screening methods	using softwares						

SPECIFIC LEARNING OUTCOMES (SLO)- M.PHARM PHARMACEUTICAL CHEMISTRY - III

Semester


M.PHARM PHARMACEUTICAL CHEMISTRY (MPC)	
Code:301T	

Id	Unit/Top	Outcome statement
	ic	
SLO1(RM	Unit I	To Understand General research methodology
B)		
SLO2(RM	Unit II	Able to acquire knowledge in Biostatistics
B)		
SLO3(RM	Unit III	Able to detail protocols of Medical research
B)		
SLO4(RM	Unit IV	To have Clear perspective of CPCSEA guidelines for laboratory animal facilities
B)		
SLO5(RM	Unit V	To understand the declaration of Helsinki rule, additional principles combined with
B)		medical care

M.Pharm Pharmaceutical Chemistry- Course outcome and Specific Learning Outcome Map

I-SEMESTER											
	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8	CO9	C010	CO11
SLO1(MPAT)	Χ										
SLO2(MPAT)	Χ										
SLO3(MPAT)	Χ										
SLO4(MPAT)	Χ										

Χ

Х

X

SLO2(CNP)

SLO3(CNP)

Χ

Χ

SLO4(CNP)	Χ			Χ				
SLO5(CNP)	Χ			Χ	X			
SLO1(PCP-I)	Χ				X			
SLO2(PCP-I)		X			Χ			
SLO3(PCP-I)			Χ		Χ			
SLO4(PCP-I)				Χ	Χ			

II-SEMESTER											
	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8	CO9	C010	CO11
SLO1(ASA)	X					X					
SLO2(ASA)	X					X					
SLO3(ASA)	X					X					
SLO4(ASA)						X					
SLO5(ASA)						X					
SLO1(AOC-							X				
II)											
SLO2(AOC-							X				
II)											

								1		
SLO3(AOC-		Χ				X				
II)										
SLO4(AOC-		X				X				
II)										
SLO5(AOC-						X				
II)										
SLO1(CADD)			Χ				Χ			
SLO2(CADD)			X				Χ			
SLO3(CADD)							Χ			
SLO4(CADD)							Χ			
SLO5(CADD)							Χ			
SLO1(PPC)				X		X		X		
SLO2(PPC)		X			Χ			Χ		
SLO3(PPC)		X	X		Χ	X		X		
SLO4(PPC)			X			X		Χ		
SLO5(PPC)								X		
SLO1(PPII)	X					X			Χ	
SLO2(PPII)		X			Χ				Χ	

	ISO 9001 - 2	College of Phan 2000 Certified College versity and Approved by AICTE &	\mathbf{O}
SLO3(PPII)	X	X	X
SLO4(PPII)		X	X
	III SH	EMESTER	i
SLO1(RMB)			X
SLO2(RMB)			X
SLO3(RMB)			X
SLO4(RMB)			X
SLO5(RMB)			X

.

۰.